\(\kappa \)-velo improves single-cell RNA-velocity estimation

Brigitte Joanne Bouman, Valérie Marto-Lassauzaie, Fearghal Declan Donaghy, Yasmin Demerdash, Marieke Alída Gertruda Essers and Laleh Haghverdi

1 Berlin Institute for Medical Systems Biology, Max Delbrück Center in the Helmholtz Association, Berlin, Germany
2 Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
3 Château de Versailles, Université Paris-Saclay, Paris, France
4 Division Interdisciplinary Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany

Visualisation

Low-dimensional representation of velocity should preserve:
- the direction of the vectors
- the magnitude (speed of change) of the vectors
- local variations (representing fluctuations of the dynamics & cell plasticity)

Scale invariance

Solution \((u, \beta, \gamma)\) is not unique: \((ku, k\beta, k\gamma)\) is a solution for any \(k\). We need to find real scaling parameter \(\kappa\).

Solution:
Given a measure of time between states \(u\),
\[\kappa \Delta t = \frac{1}{\beta} \log \left(\frac{u(t) - u(t-\Delta t)}{u(t) - u(t+\Delta t)} \right) \]
Given a measure of \(\Delta t\) we can solve for gene-specific \(\kappa\).

Density of cells can be used as a proxy of time

\(\kappa \)-velo recovers high-dimensional velocity vector

Careful processing prevents introduction of artefacts

\(\kappa \)-velo recovers differentiation trajectory in hematopoietic populations

Processing

After counting the unspliced and spliced reads (read alignment), both matrices \((U\) and \(S)\) are processed. For the downstream velocity calculations, it is important to:
- preserve the ratio between \(u\) and \(s\)
- filter low quality genes.

References:

Find out more:
- BioRxiv tutorials
- the paper
- the hashtag lab